Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38723702

RESUMEN

Nanotechnology involves the utilization of nanomaterials, including polymeric nanocapsules (NCs) that are drug carriers. For modify drug release and stability, nanoformulations can feature different types of polymers as surface coatings: Polysorbate 80 (P80), Polyethylene glycol (PEG), Chitosan (CS) and Eudragit (EUD). Although nanoencapsulation aims to reduce side effects, these polymers can interact with living organisms, inducing events in the antioxidant system. Thus far, little has been described about the impacts of chronic exposure, with Drosophila melanogaster being an in vivo model for characterizing the toxicology of these polymers. This study analyzes the effects of chronic exposure to polymeric NCs with different coatings. Flies were exposed to 10, 50, 100, and 500 µL of NCP80, NCPEG, NCCS, or EUD. The survival rate, locomotor changes, oxidative stress markers, cell viability, and Nrf2 expression were evaluated. Between the coatings, NCPEG had minimal effects, as only 500 µL affected the levels of reactive species (RS) and the enzymatic activities of catalase (CAT) and glutathione S-transferase (GST) without reducing Nrf2 expression. However, NCEUD significantly impacted the total flies killed, RS, CAT, and Superoxide dismutase from 100 µL. In part, the toxicity mechanisms of these coatings can be explained by the imbalance of the antioxidant system. This research provided initial evidence on the chronic toxicology of these nanomaterials in D. melanogaster to clarify the nanosafety profile of these polymers in future nanoformulations. Further investigations are essential to characterize possible biochemical pathways involved in the toxicity of these polymeric coatings.

2.
Redox Rep ; 28(1): 1-6, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38041595

RESUMEN

Elevated D-dimer levels at hospital admission may also indicate a higher likelihood of progressing to a severe or critical state. This study aimed to assess reactive oxygen species (ROS), non-enzymatic antioxidant reduced glutathione (GSH), and D-dimer levels in COVID-19 patients upon admission, examining their association with mortality outcomes. Data was collected from the medical records of 170 patients hospitalized in a referral hospital unit between March 2020 and December 2021. Patients were divided into two groups: the ward bed group (n = 87), comprising 51% with moderate clinical conditions, and the intensive care unit (ICU) group (n = 83), comprising 49% with severe conditions. The mean age was 59.4 years, with a male predominance of 52.4%. The overall death rate was 43%, with 30.6% in the moderate group and 69.4% in the severe group. The average time from symptom onset to hospitalization was 6.42 days. Results showed that non-survivors had high D-dimer and ROS counts, longer ICU stays, and worse saturation levels at admission. In conclusion, elevated ROS and D-dimer levels may contribute to worse outcomes in critically ill patients, potentially serving as specific and sensitive predictors of poor outcomes upon admission.


Asunto(s)
COVID-19 , Humanos , Masculino , Persona de Mediana Edad , Femenino , Especies Reactivas de Oxígeno , SARS-CoV-2 , Glutatión , Estrés Oxidativo
3.
Pharmacol Rep ; 75(5): 1177-1186, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37698830

RESUMEN

BACKGROUND: Obesity is a multifactorial disease with epigenetic manifestations that increases the prevalence of associated comorbidities such as metabolic syndrome, cardiovascular dysfunction, and major depression disorder. Given the aforementioned, a search for new pharmacological alternatives for the treatment of this disease is necessary. The current study aimed to evaluate the effects of histone deacetylase-3 (HDAC3) inhibition caused by RGFP966 (a benzamide-type HDAC inhibitor selective for HDAC3) administration, in an animal model of obesity induced by high-fat diet (HFD). METHODS: Adult male mice C57BJ/6 were fed with a normal pellet diet (NPD) or HFD for 120 days. The HDAC3 inhibitor (RGFP966; 10 mg/kg; sc) was administered on the 91st to 120th day of the experiment (per 30 days). After the last inhibitor administration, animals were euthanized, blood was collected, and the hippocampus was removed for biochemical determinations. RESULTS: In an overall manner, the administration of RGFP966 protected against changes in body weight gain, glucose, insulin, lipid profile, adipokines, and increase of hippocampal proinflammatory cytokines levels caused by HFD. CONCLUSION: Therefore, HDAC3 inhibition can represent a promising pharmacological target for the treatment of obesity.

4.
J Comp Physiol B ; 193(5): 479-493, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37500966

RESUMEN

This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.


Asunto(s)
Drosophila melanogaster , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Citrato (si)-Sintasa/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Lactato Deshidrogenasas/metabolismo , Lactatos
5.
Chem Biol Interact ; 375: 110429, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36870467

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that affects several elderly people per years. AD is a pathology of multifactorial etiology, resulting from multiple environmental and genetic determinants. However, there is no effective pharmacological alternative for the treatment of this illness. In this sense, the purpose of current study was to characterize the mechanisms by which Aß1-42 injection via intracerebroventricular induces neurobehavioral changes in a time-course curve. In addition, suberoylanilide hydroxamic acid (SAHA) inhibitor of histone deacetylase (HDAC) was used to investigate the involvement of epigenetic modifications Aß1-42-caused in aged female mice. In general manner, Aß1-42 injection induced a major neurochemical disturbance in hippocampus and prefrontal cortex of animals and a serious impairment of memory. Overall, SAHA treatment attenuated neurobehavioral changes caused by Aß1-42 injection in aged female mice. The subchronic effects presented of SAHA were through modulation of HDAC activity, regulation of brain-derived neurotrophic factor (BDNF) levels and expression of BDNF mRNA, accompanied by unlocking cAMP/PKA/pCREB pathway in hippocampus and prefrontal cortex of animals.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Femenino , Ratones , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epigénesis Genética , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Vorinostat
6.
Neurotoxicology ; 94: 223-234, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528186

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and repetitive behaviors. In this study, we assessed the effect of lutein-loaded nanoparticles on ASD-like behaviors induced by prenatal valproic acid (VPA) exposure in female offspring rats and the possible involvement of oxidative stress and apoptosis. Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg), on the gestational day 12.5. The VPA-exposed female offspring rats were divided into two subgroups and received either lutein-loaded nanoparticles (5 mg/kg) or saline by oral gavage, for 14 days. The animals were submitted to the three-chamber test and open field to evaluate ASD-like behaviors. The hippocampus was removed for the determination of oxidative stress indicators (ROS; TBARS; SOD and Nrf2) and apoptosis biomarkers (Hsp-70; p38-MAPK; Bax and Bcl-2). The exposure to lutein-loaded nanoparticles reversed sociability deficit, social memory deficit, and anxiety-like and repetitive behaviors induced by VPA, and restored the oxidative stress indicators and apoptosis biomarkers in the hippocampus. This neurochemical effect must be associated with the reversal of ASD-like behaviors. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for VPA-induced behavioral damage in female rats and suggest the involvement of oxidative stress.


Asunto(s)
Trastorno del Espectro Autista , Nanopartículas , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratas , Femenino , Animales , Ácido Valproico/efectos adversos , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Luteína/efectos adversos , Ratas Wistar , Conducta Social , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Estrés Oxidativo , Nanopartículas/toxicidad , Apoptosis , Biomarcadores
7.
Free Radic Res ; 56(9-10): 577-594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36641780

RESUMEN

Drug repurposing allows searching for new biological targets, especially against emerging diseases such as Covid-19. Drug colchicine (COL) presents recognized anti-inflammatory action, while the nanotechnology purpose therapies with low doses, efficacy, and decrease the drug's side-effects. This study aims to evaluate the effects of COL and colchicine nanocapsules (NCCOL) on survival, LC50, activity locomotor, and oxidative stress parameters, elucidating the toxicity profile in acute and chronic exposure in Drosophila melanogaster. Three-day-old flies were investigated into groups: Control, 0.001, 0.0025, 0.005, and 0.010 mg/mL of COL or NCCOL. The survival rate, open field test, LC50, oxidative stress markers (reactive species (RS) production, thiobarbituric acid reactive substances), antioxidant enzyme activity (catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase), protein thiols, nonprotein thiols, acetylcholinesterase activity, and cell viability were measured. As a result, acute exposure to the COL decreases the number of crosses in the open field and increases CAT activity. NCCOL reduced RS levels, increased lipoperoxidation and SOD activity. Chronic exposure to the COL and NCCOL in high concentrations implied high mortality and enzymatic inhibition of the CAT and AChE, and only the COL caused locomotor damage in the open field test. Thus, NCCOL again reduced the formation of RS while COL increased. In this comparative study, NCCOL was less toxic to the antioxidant system than COL and showed notable involvement of oxidative stress as one of their toxicity mechanisms. Future studies are needed to elucidate all aspects of nanosafety related to the NCCOL.


Asunto(s)
COVID-19 , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Antioxidantes/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Estrés Oxidativo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Compuestos de Sulfhidrilo/metabolismo
8.
Steroids ; 164: 108727, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32891681

RESUMEN

Nandrolone decanoate (ND) belongs to the class II of anabolic-androgenic steroids (AAS), which is composed of 19-nor-testosterone-derivatives. AAS represent a group of synthetic testosterone that is used in clinical treatment. However, these drugs are widely abused among individuals as a means of promoting muscle growth or enhancing athletic performance. AAS in general and ND in particular have been associated with several behavioral disturbances, such as anxiety, aggressiveness and depression. A factor that contributes to the development of depression is the brain activation of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of kynurenine pathway (KP). In the present study, we examined the involvement of KP in depressive phenotype induced by a ND treatment (10 mg/kg/day/s.c., for 28 days) that mimics human abuse system (e.g. supraphysiological doses) in C57B/6J mice. Our results showed that ND caused depressive like-behavior in the tail suspension test and anhedonic-like state measured in the sucrose preference test. ND administration decreased the levels of brain-derived neurotrophic factor and neurotrophin-3 and reduced Na+,K+-ATPase activity in the hippocampus, striatum and prefrontal cortex. We also found that ND elicited KP activation, as reflected by the increase of IDO activity and kynurenine levels in these brain regions. Moreover, ND decreased serotonin levels and increased 5-hydroxyindoleacetic acid levels in the brain. Treatment with IDO inhibitor 1-methyl-dl-trypthophan (1 mg/kg/i.p.) reversed the behavioral and neurochemical alterations induced by ND. These results indicate for the first time that KP plays a key role in depressive-like behavior and neurotoxicity induced by supraphysiologicaldoses of ND in mice.


Asunto(s)
Anabolizantes/administración & dosificación , Conducta Animal/efectos de los fármacos , Depresión/psicología , Quinurenina/metabolismo , Nandrolona Decanoato/administración & dosificación , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Depresión/inducido químicamente , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/enzimología , Corteza Prefrontal/metabolismo , Triptófano/administración & dosificación , Triptófano/análogos & derivados
9.
Cutan Ocul Toxicol ; 39(2): 126-133, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32183539

RESUMEN

Background: ultraviolet radiation types A and B (UV) (400-315nm and 315-280nm respectively) are the main components present in sunlight known to cause skin injuries. Arnica montana is a plant that has been widely studied for containing anti-inflammatory, healing and analgesic properties capable of preventing or ameliorating lesions. Here, we investigated the therapeutic effect of topical application of Arnica montana after UVB-induced cutaneous injuries in mice.Methods: mice were exposed to UVB radiation (Philips TL40W/12 RS lamp) in a period of 3 hours. After one hour of radiation exposure, the animals were treated with topical application of Arnica montana ointment (250 mg/g) in the ear. At the time of 16 hours after treatment, the parameters of edema, oxidative stress and inflammatory reaction were measured in the ear of mice.Results: our results demonstrated that topical treatment with Arnica montana reduced the UVB-induced inflammatory response as demonstrated by the reduction of ear edema, inhibition of myeloperoxidase activation, decrease of nuclear factor kappa B levels and reduction of proinflammatory cytokines levels, such as interleukin-1beta, interleukin-6, tumour necrosis factor-alpha and interferon-gamma. In addition, Arnica montana ameliorated oxidative damage mediated by UVB radiation, as demonstrated by the reduction of lipid peroxidation, protein oxidation and increase of tissue antioxidant capacity and glutathione levels in the ear.Conclusion: we concluded that Arnica montana ointment is effective in alleviating the auricular inflammatory process and oxidative damage induced by acute UVB radiation, sustaining the traditional use of Arnica montana for the treatment of skin disorders.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Arnica , Edema/tratamiento farmacológico , Trastornos por Fotosensibilidad/tratamiento farmacológico , Preparaciones de Plantas/uso terapéutico , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Rayos Ultravioleta/efectos adversos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Citocinas/metabolismo , Edema/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Pomadas , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Trastornos por Fotosensibilidad/metabolismo , Preparaciones de Plantas/farmacología , Traumatismos Experimentales por Radiación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...